# **Runoff and Erosion**



#### Introduction

#### Runoff

### Erosion

## Application to post-fire conditions



Southwest Watershed Research Center



#### Scope

- Hillslope scale
- Monsoon season
- Semi-arid grassland/oak woodlands
- Runoff Infiltration based
- Erosion Rill/interrill based
- Walnut Gulch and Rainfall simulator data









# In semi-arid regions runoff occurs when the rainfall rate > infiltration capacity of the soil

# This process is termed Hortonian runoff Rainfall excess runoff





Southwest Watershed Research Center



## Rainfall intensity effects on runoff





Southwest Watershed Research Center



## Runoff

## **Rainfall intensity effects on runoff**





Southwest Watershed Research Center



## Runoff

## **Rainfall intensity effects on runoff**







Southwest Watershed Research Center





## **Vegetation effects on runoff**





Southwest Watershed Research Center

Tucson - Tombstone, AZ

Southwest Watershed Research Center





# Consider a constant rainfall intensity, i



Southwest Watershed Research Center







When i > than the infiltration rate, f, water begins to pond on the surface. f is a function of soil and vegetation characteristics



Southwest Watershed Research Center







The rainfall excess,  $r_e$ , rate is defined as  $r_e = i - f$ 

This is the rate that water ACCUMULATES on the surface



Southwest Watershed Research Center







The runoff rate, q, is the rate that  $r_e$  flows OFF the surface and is a function of slope and roughness



Southwest Watershed Research Center





#### What We Measure



At the point scale f can be measured.

However, it is NOT rainfall infiltration.

Southwest Watershed Research Center



Southwest Watershed Research Center



#### What We Measure



At the point scale f can be measured.

At all other scales, only i and q are measured.

Southwest Watershed Research Center



Southwest Watershed Research Center



#### What We Calculate



i and q are used with a infiltration-runoff model to optimize the model's parameters.





Southwest Watershed Research Center



#### **Infiltration-Runoff Model**

Green-Ampt

$$\mathbf{f} = \mathbf{K}_{\mathbf{e}} \left( 1 + \frac{\mathbf{N}_{\mathbf{s}}}{\mathbf{F}} \right)$$

- f = infiltration rate
- **K**<sub>e</sub> = effective hydraulic conductivity
- N<sub>s</sub> = effective matric potential
- F = cumulative infiltration depth







#### **Infiltration-Runoff Model**

**Kinematic Wave** 

$$\frac{\partial \mathbf{h}}{\partial \mathbf{t}} + \frac{\partial \mathbf{q}}{\partial \mathbf{x}} = \mathbf{r}_{\mathbf{e}}$$

h = flow depth

- $\alpha$  = C S<sup>1/2</sup> (Chezy)
- $\alpha = S^{1/2}/n$  (Manning)
- t = time
- x = distance

$$\mathbf{q} = \alpha \mathbf{h}^{m}$$

#### Depth-discharge relationship



Southwest Watershed Research Center



## Walnut Gulch Rainfall Simulator Variable intensity - 25-180 mm/hr







Southwest Watershed Research Center

Rainfall



In rainfall simulator experiments where multiple rainfall rates are used,

Southwest Watershed Research Center



Southwest Watershed Research Center



![](_page_19_Figure_2.jpeg)

In rainfall simulator experiments where multiple rainfall rates are used,

the steady state infiltration rate frequently increases with increasing rainfall rate

![](_page_19_Picture_5.jpeg)

![](_page_19_Picture_6.jpeg)

Southwest Watershed Research Center

![](_page_20_Figure_1.jpeg)

![](_page_20_Figure_2.jpeg)

The increase in infiltration rate with rainfall rate is hypothesized to be an indication of Partial Area Response

![](_page_20_Picture_4.jpeg)

Southwest Watershed Research Center

![](_page_20_Picture_7.jpeg)

$$f = u_f (1 - e^{-i/u_f})$$

where u<sub>f</sub> = average areal infiltration rate when entire area is ponded

![](_page_21_Figure_3.jpeg)

Hawkins (1982) derived a relationship between infiltration and rainfall rates based on an Exponential Distribution of infiltration capacity over an area

![](_page_21_Picture_5.jpeg)

Southwest Watershed Research Center

$$A = G(f) = (1 - e^{-i/u_f})$$

![](_page_22_Figure_2.jpeg)

If u<sub>f</sub> can be parameterized, then the fractional contributing area can be computed using the CDF of the infiltration capacity

![](_page_22_Picture_4.jpeg)

Southwest Watershed Research Center

![](_page_22_Picture_7.jpeg)

#### What is the impact of partial area response?

![](_page_23_Figure_2.jpeg)

- Significant sandy soils no-moderate grazing
- Very little clay soils heavy grazing immediate post fire High Rainfall

![](_page_23_Picture_5.jpeg)

Southwest Watershed Research Center

![](_page_23_Picture_8.jpeg)

![](_page_24_Picture_0.jpeg)

 Modeling the erosion process on rangelands is very, very, very complicated.

 Process based models, such as WEPP, are derived from cropland data.

• To date, there is no generally accepted model for rangeland erosion prediction.

![](_page_24_Picture_4.jpeg)

![](_page_24_Picture_5.jpeg)

Southwest Watershed Research Center

## Erosion

# Steady State Sediment Continuity Equation $\frac{dG}{dx} = D_i + D_r$

- G = sediment load
- **D**<sub>i</sub> = interrill detachment
- D<sub>r</sub> = rill detachment
- x = distance downslope

![](_page_25_Picture_6.jpeg)

Southwest Watershed Research Center

![](_page_25_Picture_9.jpeg)

![](_page_26_Picture_0.jpeg)

### T<sub>c</sub> - Transport Capacity

Runoff has a certain capacity to transport sediment based on the flow shear and sediment load, G.

Detachment or deposition will occur depending on if the load is <, >, or = to the transport capacity.

![](_page_26_Picture_4.jpeg)

![](_page_26_Picture_5.jpeg)

![](_page_26_Picture_7.jpeg)

![](_page_27_Picture_0.jpeg)

#### **Interrill Detachment**

$$D_i = a K_i i q$$

- **D**<sub>i</sub> interrill detachment
- a = coefficient
- K<sub>i</sub> = interrill erodibility
- i = rainfall intensity
- q = steady state runoff rate

![](_page_27_Picture_8.jpeg)

Southwest Watershed Research Center

![](_page_27_Picture_11.jpeg)

![](_page_28_Picture_0.jpeg)

#### **Rill Detachment**

$$D_r = K_r (\tau - \tau_c) (1 - G/T_c) \quad \text{when } \tau > \tau_c$$
$$T_c > G$$

- **D**<sub>r</sub> = rill detachment (positive)
- $K_r = rill erodibility$
- $\tau$  = flow shear stress
- $\tau_{c}$  = critical shear stress

![](_page_28_Picture_7.jpeg)

![](_page_28_Picture_8.jpeg)

![](_page_28_Picture_10.jpeg)

![](_page_29_Picture_0.jpeg)

## **Rill Deposition**

 $D_r = (b V_f)/q (Tc - G)$  when  $G > T_c$ 

D<sub>r</sub> = Rill deposition (negative) b = turbulence coefficient V<sub>f</sub> = fall velocity

![](_page_29_Picture_4.jpeg)

Southwest Watershed Research Center

Tucson - Tombstone, AZ

Southwest Watershed Research Center

![](_page_30_Picture_0.jpeg)

#### **Sediment Transport**

- Raindrop detachment ALWAYS occurs
- Rill detachment occurs when G < T<sub>c</sub> and  $\tau > \tau_c$

• Deposition occurs when G > T<sub>c</sub>

![](_page_30_Picture_5.jpeg)

![](_page_30_Picture_6.jpeg)

![](_page_30_Picture_8.jpeg)

| Attribute    | Cropland                         | Rangeland                          |
|--------------|----------------------------------|------------------------------------|
| Soils        | Disturbed, tilled                | Undisturbed                        |
| Vegetation   | Monoculture, regular<br>spacing  | Community, irregular<br>spacing    |
| Topography   | Ridge-Furrow                     | Complex                            |
| Conservation | Terraces, contours,<br>waterways | Grazing, fire, brush<br>management |

![](_page_31_Picture_2.jpeg)

Southwest Watershed Research Center

![](_page_31_Picture_5.jpeg)

## Walnut Gulch Rainfall Simulator Variable intensity - 25-180 mm/hr

![](_page_32_Picture_2.jpeg)

![](_page_32_Picture_3.jpeg)

![](_page_32_Picture_4.jpeg)

Southwest Watershed Research Center

# SMALL PLOT (0.75 m<sup>2)</sup> rain drop detachment

![](_page_33_Picture_2.jpeg)

LARGE PLOT (2 x 6 m) infiltration/runoff integrated erosion response rain and flow detachment, transport, deposition

![](_page_33_Picture_4.jpeg)

![](_page_33_Picture_5.jpeg)

Southwest Watershed Research Center

## Assumptions

- Rain drop detatchment is the same on small and large plots
- Any difference between small and large plot sediment discharge is assumed to be due to dominant erosion process on the large plot
  - deposition
  - flow detachment

![](_page_34_Picture_6.jpeg)

Southwest Watershed Research Center

![](_page_34_Picture_9.jpeg)

## **Sediment Discharge Comparisons**

- small plot > large plot
  - deposition on large plot
- small plot = large plot
  - threshold of raindrop and flow detachment on large plot

## • small plot < large plot

flow detachment on large plot

![](_page_35_Picture_8.jpeg)

![](_page_35_Picture_9.jpeg)

![](_page_35_Picture_11.jpeg)

**Grassland sites** 

![](_page_36_Figure_2.jpeg)

Southwest Watershed Research Center

#### **Grassland Sites**

![](_page_37_Picture_2.jpeg)

![](_page_37_Picture_3.jpeg)

Southwest Watershed Research Center Turson, Artzona

Southwest Watershed Research Center

#### **Grassland Sites**

- Flow is sinuous
  Many obstructions to flow
- •Depositional areas behind rocks, plants, litter

![](_page_38_Picture_4.jpeg)

![](_page_38_Picture_5.jpeg)

Southwest Watershed Research Center

![](_page_38_Picture_8.jpeg)

#### **Grazing Prevents Blazing**

(sign on Hwy 83 just north of Sonoita)

![](_page_39_Picture_3.jpeg)

More vegetation = more fuel BUT burned litter forms litter dams retarding flow and sediment

![](_page_39_Picture_5.jpeg)

![](_page_39_Picture_6.jpeg)

Southwest Watershed Research Center

#### **Oak Woodland sites**

![](_page_40_Figure_2.jpeg)

#### **Flow detachment**

![](_page_40_Figure_4.jpeg)

#### **Oak Woodland Sites**

![](_page_41_Picture_2.jpeg)

![](_page_41_Picture_3.jpeg)

![](_page_41_Picture_4.jpeg)

Southwest Watershed Research Center

#### **Oak Woodland Sites**

# •Flow paths are continuous

•Few obstructions to flow

•Few depositional areas

![](_page_42_Picture_5.jpeg)

![](_page_42_Picture_6.jpeg)

Southwest Watershed Research Center

![](_page_42_Picture_9.jpeg)

#### **Grassland vs Oak Woodland**

 Working hypothesis - differences are due primarily to MICROTOPOGRAPHY

 No existing erosion model accounts for topographic differences among vegetation types

![](_page_43_Picture_4.jpeg)

![](_page_43_Picture_5.jpeg)

![](_page_43_Picture_7.jpeg)

#### **Main Issues**

Response to large events

- Cumulative effects over time
- Recovery time

![](_page_44_Picture_5.jpeg)

![](_page_44_Picture_6.jpeg)

Southwest Watershed Research Center

## Runoff ratio = Runoff volume/Rainfall volume

#### **Grassland – no significant difference**

#### **Oak Woodland – significant difference (20% increase post fire)**

![](_page_45_Figure_4.jpeg)

![](_page_45_Picture_5.jpeg)

Southwest Watershed Research Center

Tucson - Tombstone, AZ

Southwest Watershed Research Center

High  $u_f$  = unburned, no to moderate grazing, sandy soils Low  $u_f$  = burned, heavy grazing, clay soils

![](_page_46_Figure_2.jpeg)

For large events, partial area response doesn't matter.

For cumulative effects, it probably does.

![](_page_46_Picture_5.jpeg)

![](_page_46_Picture_6.jpeg)

Southwest Watershed Research Center

## Sediment Ratio = Sediment yield/Runoff \* Slope

Grassland and Oak Woodland – significant difference Oak Woodland erosion >> Grassland erosion

![](_page_47_Figure_3.jpeg)

![](_page_47_Picture_4.jpeg)

Southwest Watershed Research Center

Tucson - Tombstone, AZ

Southwest Watershed Research Center

**Take Home Message** 

- For Large Events
  - Runoff Most models work provided the parameters are ball park
  - Erosion Conceptually, WEPP style model should work better for oak woodlands than grasslands

![](_page_48_Picture_5.jpeg)

![](_page_48_Picture_6.jpeg)

Southwest Watershed Research Center

#### **Take Home Message**

- Cumulative Effects
  - No runoff or erosion model does well at simulating changes with time
  - No rangeland model for feedback between erosion and vegetation community (state and transition, productivity, etc)

![](_page_49_Picture_5.jpeg)

![](_page_49_Picture_6.jpeg)

Southwest Watershed Research Center

**Take Home Message** 

- Recovery Time
  - See previous slide
  - However, runoff changes slightly and erosion peaks immediately after the fire
  - 2 3 year recovery for erosion

![](_page_50_Picture_6.jpeg)

![](_page_50_Picture_7.jpeg)

Southwest Watershed Research Center

![](_page_51_Picture_0.jpeg)